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Abstract. A cevian of a triangle is a line segment that extends from a vertex
of the triangle to a point on the opposite side. A cevian that passes through a
triangle center is called a central cevian. There are a number of inequalities known
concerning central cevians. For example, if ma, mb, and mc are the lengths of the
medians of a triangle, then it is known that

27r2 ≤ m2
a + m2

b + m2
c ≤

27

4
R2

where r is the inradius of the triangle and R is its circumradius. We use a computer
to discover and prove similar inequalities for other central cevians. For example,
if fa, fb, and fc are the lengths of the Feuerbach cevians of a triangle, then

7

8
s2 ≤ f 2

a + f 2
b + f 2

c ≤
64

7
R2

were s is the semiperimeter of the triangle.
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1. Introduction

There are many notable points associated with a triangle, such as the incenter,
centroid, circumcenter, and orthocenter, These are special cases of triangle centers
as defined by Clark Kimberling in [3]. A cevian of a triangle is a line segment that
extends from a vertex of the triangle to a point on the opposite side. A cevian
that passes through a triangle center is called a central cevian. The cevian from
vertex A is called the A-cevian. The other cevians are named similarly.

Let Xn denote the nth named triangle center as cataloged in the Encyclopedia of
Triangle Centers [4]. Let |PQ| denote the length of the line segment PQ.

The cevians through Xn will be named AAn, BBn, and CCn as shown in Figure 1.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Figure 1. Cevians through Xn

2. The Data

We use barycentric coordinates in this study. The barycentric coordinates for
triangle centers X1 through X12 in terms of the sides of the triangle, a, b, and
c, are shown in Table 1. Only the first barycentric coordinate is given, because
if f(a, b, c) is the first barycentric coordinate for a point P , then the barycentric
coordinates for P are (

f(a, b, c) : f(b, c, a) : f(c, a, b)
)
.

These were derived from [4].

Table 1. Barycentric coordinates for the first 12 centers

n First barycentric coordinate for Xn

1 a
2 1
3 a2(a2 − b2 − c2)
4 (a2 + b2 − c2)(a2 − b2 + c2)
5 c4 − a2b2 + b4 − a2c2 − 2b2c2

6 a2

7 (a + b− c)(a− b + c)
8 a− b− c
9 a(a− b− c)
10 b + c
11 (b− c)2(−a + b + c)
12 (a + b− c)(a− b + c)(b + c)2

We will find inequalities that involve the squares of the lengths of central cevians
and other elements of a triangle, as listed in Table 2.

Table 2. Elements of a triangle

symbol Description
a, b, c the sides of the triangle
K the area of the triangle
r the inradius of the triangle
R the circumradius of the triangle
s the semiperimeter of the triangle
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To find the distance between two points, we used the following formula which
comes from [2].

Proposition 1 (Distance Formula). Given two points P = (u1, v1, w1) and Q =
(u2, v2, w2) in normalized barycentric coordinates. Denote x = u1−u2, y = v1−v2
and z = w1 − w2. Then the distance between P and Q is√

−a2yz − bzx− c2xy.

To find the length of a cevian of a triangle, we proceed as follows. Set up a
barycentric coordinate system with 4ABC as the reference triangle, so that A =
(1 : 0 : 0), B = (0 : 1 : 0), and C = (0 : 0 : 1). Let P be an arbitrary point
in the plane other than A. Let the barycentric coordinates for P be (p : q : r).
Let AP meet BC at A′ (Figure 2). Then it is straightforward to show that the
barycentric coordinates for A′ are (0 : q : r).

Figure 2. Barycentric Coordinates

Using Proposition 1, we get the following result.

Proposition 2 (Cevian Length). Let P be a point in the plane of 4ABC with
trilinear coordinates (p : q : r). Let AP meet BC at A′. Then

|AA′| =
√
b2r(q + r) + c2q(q + r)− a2qr

q + r
.

Using Proposition 2 and Table 1, we can find the length of the A-cevian that
passes through the point Xn. Table 3 shows the lengths for n ranging from 1 to
12, where K =

√
s(s− a)(s− b)(s− c) and s = (a + b + c)/2.
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Table 3. Cevian lengths for the first 12 centers

n Square of length of A-cevian passing through Xn

1 bc

(
1− a2

(b + c)2

)
2

1

4

(
2
(
b2 + c2

)
− a2

)
3 −

a2b2c2
(
a4 − 2a2 (b2 + c2) + (b2 − c2)

2
)

(
(b2 − c2)2 − a2 (b2 + c2)

)2
4

4K2

a2

5
16K2 (a6 − 3a4b2 − 3a4c2 + 3a2b4 + 3a2b2c2 + 3a2c4 − b6 + b4c2 + b2c4 − c6)

(2a4 − 3a2b2 − 3a2c2 + b4 − 2b2c2 + c4)2

6
b2c2 (2 (b2 + c2)− a2)

(b2 + c2)2

7 −a3 + a (−3b2 + 2bc− 3c2) + 2(b− c)2(b + c)

4a

8
−a3 + a (3b2 − 2bc + 3c2) + 2(b− c)2(b + c)

4a

9 −bc (a4 − 2a2 (b2 + c2) + (b− c)4)

((b− c)2 − a(b + c))2

10
a2(−(a + b))(a + c) + b2(a + b)(2a + b + c) + c2(a + c)(2a + b + c)

(2a + b + c)2

11
(b2x + c2y)(x + y)− a2xy

(x + y)2
where

x = (a− b)2(a + b− c)

y = (a− c)2(a− b + c)

12
xy (−a2 + b2 + c2) + b2y2 + c2x2

(x + y)2
where

x = (a + c)2(a + b− c)

y = (a + b)2(a− b + c)
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3. Main Results

Notation. The symbol Sn represents the sum of the squares of the lengths of the
cevians of 4ABC that pass through triangle center Xn. In other words,

Sn = |AAn|2 + |BBn|2 + |CCn|2.

For example, if n = 2, then the cevians are medians and S2 = m2
a + m2

b + m2
c .

Conventions. In this section, all inequalities listed are best possible.

The inequality Sn ≤ k0f(a, b, c) is said to be best possible if there is no constant
k with k < k0 such that Sn ≤ kf(a, b, c) is true for all triangles.

The inequality k0f(a, b, c) ≤ Sn is said to be best possible if there is no constant
k with k > k0 such that kf(a, b, c) ≤ Sn is true for all triangles.

If no upper bound is listed for Sn with respect to f(a, b, c), this means that there
is no constant k such that Sn ≤ kf(a, b, c) is true for all triangles.

If no lower bound is listed for Sn with respect to f(a, b, c), this means that there
is no constant k > 0 such that kf(a, b, c) ≤ Sn is true for all triangles.

Methodology. The best constants for all inequalities were found using Mathe-
matica and Algorithm K from [8]. Since all computations were performed using
exact symbolic algebra (as opposed to numerical approximations), these computer
calculations constitute proofs that the inequalities are correct.

Theorem 1. The following inequalities are true for all triangles.

27r2 ≤ S1 ≤
27

4
R2

27r2 ≤ S2 ≤
27

4
R2

27r2 ≤ S3

27r2 ≤ S4 ≤
27

4
R2

27r2 ≤ S5 ≤
27

4
R2

27r2 ≤ S6 ≤
27

4
R2

27r2 ≤ S7 ≤
27

4
R2

27r2 ≤ S8 < 12R2

27r2 ≤ S9 <
68

9
R2

27r2 ≤ S10 <
68

9
R2

k1r
2 ≤ S11 ≤

64

7
R2

27r2 ≤ S12 ≤
27

4
R2

where k1 ≈ 30.91612615 is the positive root of x3 − 32x2 + 48x− 448.
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Equality occurs when the triangle is equilateral, except in the following cases.

For 27r2 ≤ S3, S5 ≤ 27
4
R2, and 27r2 ≤ S5, equality occurs when the sides of the

triangle are proportional to 1, 1, and
√

3.

For S11 ≤ 64
7
R2, equality occurs when the sides of the triangle are proportional to

1, 1, and 2
√

3
7
.

For k1r
2 ≤ S11, equality occurs when the sides of the triangle are proportional to

1, 1, and the positive root of 7x3 + 2x2 + 4x− 8.

Lemma 1. Let A′ be a point in the interior of side BC of 4ABC. Let |AB| = c,
|AC| = b and |AA′| = xa (Figure 3). Then

ha ≤ xa < max(b, c)

where ha is the length of the altitude from A.

Figure 3. Cevian from A

Proof. Let H be the foot of the altitude from A (Figure 4). By the Pythagorean
Theorem, it can be seen that the closer A′ gets to H, the smaller xa gets. The
minimum value of xa is ha and the maximum value for xa is the larger of b and c.

�

Figure 4. Cevian from A

Proposition 3. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

27r2 ≤ x < 12R2.
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Proof. We will prove a more general result. Let xa be the length of any interior
cevian from vertex A of 4ABC. (An interior cevian meets the opposite side at
an interior point of that side.) Define xb and xc similarlly. Note that the three
cevians need not all pass through the same point P . Then we will show that

(1) 27r2 ≤ x2
a + x2

b + x2
c < 12R2.

By Lemma 1, xa ≥ ha. Similarly for xb and xc. Thus,

x2
a + x2

b + x2
c ≥ h2

a + h2
b + h2

c .

But

h2
a + h2

b + h2
c ≥ 27r2

from inequality 27r2 ≤ S4 of Theorem 1. This proves the left side of Equation (1).
Without loss of generality, we can assume that a ≤ b ≤ c. By Lemma 1, we have
xa < c, xb < c, and xc < b. Thus

(2) x2
a + x2

b + x2
c < b2 + 2c2.

The right side of Equation (1) will then be true if we can prove that b2+2c2 < 12R2.
This inequality is not homogeneous, so we cannot use the methods of [8]. Instead,
we use the Simplify command in Mathematica. The formula for R in terms of a,
b, and c is well known, namely

R =
abc

4K

where K is the area of 4ABC. We thus issue the following Mathematica com-
mands.

s = (a+b+c)/2;

K = Sqrt[s(s-a)(s-b)(s-c)];

R = a*b*c/(4K);

inequality = b^2+2c^2 < 12R^2;

triangCondition = a>0 && b>0 && c>0 && a+b>c && b+c>a && c+a>b;

Simplify[inequality, triangCondition]

Mathematica responds with True, indicating that the inequality is correct. Note
that we did not need the condition a ≤ b ≤ c. This concludes the proof of the
right side of Equation (1). �

The constants in Proposition 3 are best possible as can be seen by the inequality
for S8 in Theorem 1.
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Continuing with Algorithm K, we get the following results.

Theorem 2. The following inequalities are true for all triangles.

8

9
s2 < S1 ≤ s2

s2 ≤ S2 <
3

2
s2

S4 ≤ s2

S5 ≤
33

25
s2

18

25
s2 < S6 ≤ s2

1

2
s2 < S7 ≤ s2

s2 ≤ S8 < 3s2

s2 ≤ S9 < 2s2

s2 ≤ S10 <
17

9
s2

7

8
s2 ≤ S11 ≤ 2s2

1

2
s2 < S12 ≤ s2

Equality occurs when the triangle is equilateral, except in the following cases.

For S5 ≤ 33
25
s2, equality occurs when the sides of the triangle are proportional to

1, 1, and
√

3.

For 7
8
s2 ≤ S11, equality occurs when the sides of the triangle are proportional to

1, 1, and 2
7
.

Proposition 4. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

x < 3s2.

Proof. This inequality follows from Equation (2) and the fact that the Mathemat-
ica code

inequality = b^2+2c^2 < 3s^2;

Simplify[inequality, triangCondition]

returns True. �

The constant “3” is best possible as can be seen from the inequality for S8 in
Theorem 2.

Lemma 2. Let A′ be a point in the interior of side BC of 4ABC. Let |AB| = c,
|AC| = b and |AA′| = xa (Figure 3). Then

xa ≥ min(b, c) cos
A

2
.



Stanley Rabinowitz 203

Proof. In [5], it is shown that

xa ≥ (kb + k′c) cos
A

2

where k = |BA′|/|A′C| and k′ = 1 − k. The function f(k) = kb + (1 − k)c is a
linear function of k over the interval [0, 1]. It takes on all values from min(b, c) to
max(b, c). Therefore, when b > 0, c > 0, and 0 ≤ k ≤ 1, we must have

kb + (1− k)c ≥ min(b, c).

The result now follows. �

Proposition 5. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

1

2
s2 < x.

Proof. By Lemma 2, we have

x2
a ≥ min(b2, c2) cos2

A

2
.

From the half-angle formula for cosine,

cos2
A

2
=

1 + cosA

2
,

and from the Law of Cosines,

cosA =
b2 + c2 − a2

2bc
,

we see that

x2
a ≥ min(b2, c2)

(b + c− a)(b + c + a)

4bc
with similar formulas for xb and xc.

Without loss of generality, assume that a ≤ b ≤ c. Then

(3) x = x2
a + x2

b + x2
c ≥ b2

(b + c− a)s

2bc
+ a2

(c + a− b)s

2ca
+ a2

(a + b− c)s

2ab
.

Using this value for x in terms of a, b, and c, and the definitions of s and
triangCondition from the proof of Proposition 3, we issue the following Mathe-
matica commands.

inequality = x > (1/2)s^2;

Simplify[inequality, triangCondition]

The response of True proves the inequality. �

The proof shows that the result is true for any three internal cevians. They do
not necessarily have to all pass through the same point P .

The constant “1/2” is best possible as can be seen from the inequality for S7 in
Theorem 2.

Related results can be found in Theorem 14.11 of [1, p. 124] and Theorem 7.22 of
[6, p. 337].
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Continuing with Algorithm K, we get the following results.

Theorem 3. The following inequalities are true for all triangles.

27

2
rR ≤ S1 ≤

3

2

√
3Rs

27

2
rR ≤ S2 < 3Rs

S4 ≤
3

2

√
3Rs

S5 ≤
66

25
Rs

288

25
rR < S6 ≤

3

2

√
3Rs

8rR < S7 ≤
3

2

√
3Rs

27

2
rR ≤ S8 < 6Rs

27

2
rR ≤ S9 <

34

9
Rs

27

2
rR ≤ S10 <

34

9
Rs

k2rR ≤ S11 ≤ k3Rs

8rR < S12 ≤
3

2

√
3Rs

where k2 ≈ 14.12657721 is the positive root of 2x3 − 5x2 − 256x − 1024 and
k3 ≈ 3.737553924 is the largest positive root of 4x6+20117x4−356864x2+1048576.

Equality occurs when the triangle is equilateral, except for S5 ≤ 66
25
Rs, where

equality occurs when the sides of the triangle are proportional to 1, 1, and
√

3.

Proposition 6. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

8rR < x < 6Rs.

Proof. The right side of the inequality follows from Equation (2) and the fact that
the Mathematica code

inequality = b^2+2c^2 < 6R*s;

Simplify[inequality, triangCondition]

returns True.

The left side of the inequality follows from the fact that the Mathematica code

r = K/s;

inequality = x > 8rR;

Simplify[inequality, triangCondition]

returns True, where x is given by Equation (3). �

The constants in Proposition 6 are best possible as can be seen from the inequal-
ities for S7 and S8 in Theorem 3.
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Continuing with Algorithm K, we get the following results.

Theorem 4. The following inequalities are true for all triangles.

3
√

3K ≤ S1

3
√

3K ≤ S2

3
√

3K ≤ S6

3
√

3K ≤ S7

3
√

3K ≤ S8

3
√

3K ≤ S9

3
√

3K ≤ S10

4
√

2K ≤ S11

3
√

3K ≤ S12

Equality occurs when the triangle is equilateral, except for 4
√

2K ≤ S11, where
equality occurs when the sides of the triangle are proportional to 1, 1, and 2

3
.

Proposition 7. Let xa be the length of an internal A-cevian in 4ABC. Define
xb and xc similarly. (The three cevians need not concur.) Let x = x2

a + x2
b + x2

c.
Then

x ≥ k7K

where k7 ≈ 4.319536403 is the positive real root of x26 + 279x24 + 26353x22 +
1287331x20 + 29550479x18− 84430591x16− 19873132241x14− 177553607339x12 +
3995469783904x10−20956237447808x8+24820097419264x6−17358828744704x4+
5114979942400x2 − 1274019840000 and is the best possible constant.

Proof. The following Mathematica code proves this result.

s = (a+b+c)/2;

K = Sqrt[s(s-a)(s-b)(s-c)];

expression = x/K;

Minimize[expression, triangCondition, {a,b,c}]

where x is given by Equation (3). �



206 Inequalities involving Central Cevians

If the 3 cevians concur, then Theorem 4 would suggest that x2
a +x2

b +x2
c ≥ 3

√
3K.

However, this is not the case. Figure 5 shows an example where

x2
a + x2

b + x2
c

K
≈ 4.95030 < 3

√
3.

Figure 5. Three concurrent cevians with (x2
a + x2

b + x2
c) < 3

√
3K.

In this figure, found using Geometer’s Sketchpad, a = 3, b = 105/32, c = 39/8,
|B′C| ≈ 2.10706, |AC ′| ≈ 2.76794, |BA′| ≈ 2.93549, |CA′| ≈ 0.06451,
|AB′| ≈ 3.22726, |CB′| ≈ 0.05399, xa ≈ 3.29496, xb ≈ 3.01143, xc ≈ 1.98276, and
(x2

a + x2
b + x2

c)/K ≈ 4.95030.

Noting that 4.950302 ≈ 24.5 suggests the following conjecture.

Conjecture 1. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

x ≥ 7

2

√
2K.
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4. Related Results

In this section, the inequalities are all best possible, however, we omit inequalities
involving Sn for n =3, 5, 11, or 12. The compute power available to us was
insufficient to find many of the inequalities involving these central cevians. The
results were found using Algorithm K.

Theorem 5. The following inequalities are true for all triangles.

1

2
(a2 + b2 + c2) < S1 ≤

3

4
(a2 + b2 + c2)

S2 =
3

4
(a2 + b2 + c2)

S4 ≤
3

4
(a2 + b2 + c2)

12

25
(a2 + b2 + c2) < S6 ≤

3

4
(a2 + b2 + c2)

1

3
(a2 + b2 + c2) < S7 ≤

3

4
(a2 + b2 + c2)

3

4
(a2 + b2 + c2) ≤ S8 <

3

2
(a2 + b2 + c2)

3

4
(a2 + b2 + c2) ≤ S9 <

4

3
(a2 + b2 + c2)

3

4
(a2 + b2 + c2) ≤ S10 <

17

18
(a2 + b2 + c2)

Equality occurs when the triangle is equilateral.

Proposition 8. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

1

3
(a2 + b2 + c2) < x <

1

3
(3 +

√
3)(a2 + b2 + c2).

The proof uses Mathematica in the same way as in the proof of Proposition 6 and
is omitted.

The constant “1/3” on the left side of the inequality in Proposition 8 is best
possible as can be seen from the inequality for S7 in Theorem 5. To show that the
constant “1

3
(3 +

√
3)” on the right side is best possible, we recall Equation (2),

and then issue the following Mathematica command.

expression = (b^2+2c^2)/(a^2+b^2+c^2);

Maximize[expression, triangCondition, {a,b,c}]

Mathematica returns the maximum 1
3
(3+
√

3) and states that the maximum occurs

for the degenerate triangle with sides 1, 1 +
√

3, and 2 +
√

3.
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Continuing with Algorithm K, we get the following results.

Theorem 6. The following inequalities are true for all triangles.

32

45
(ab + bc + ca) < S1 < ab + bc + ca

3

4
(ab + bc + ca) ≤ S2 <

3

2
(ab + bc + ca)

S4 < ab + bc + ca

72

125
(ab + bc + ca) < S6 < ab + bc + ca

2

5
(ab + bc + ca) < S7 < ab + bc + ca

3

4
(ab + bc + ca) ≤ S8 < 3(ab + bc + ca)

3

4
(ab + bc + ca) ≤ S9 <

17

9
(ab + bc + ca)

3

4
(ab + bc + ca) ≤ S10 <

17

9
(ab + bc + ca)

Equality occurs when the triangle is equilateral.

Proposition 9. Let P be a point inside 4ABC. Let x be the sum of the squares
of the lengths of the cevians through P . Then

2

5
(ab + bc + ca) < x < 3(ab + bc + ca).

The proof uses Mathematica in the same way as in the proof of Proposition 6 and
is omitted.

The constants in the inequality in Proposition 9 are best possible as can be seen
from the inequalities for S7 and S8 in Theorem 6.
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Continuing with Algorithm K, we get the following results.

Theorem 7. The following inequalities are true for all triangles.

S1 ≤ S2

S1 ≤
100

81
S6

S1 ≤
16

9
S7

S1 ≤ S8

S1 ≤ S9

S1 ≤ S10

S2 ≤
3

2
S1

S2 ≤
25

16
S6

S2 ≤
9

4
S7

S2 ≤ S8

S2 ≤ S9

S2 ≤ S10

S4 ≤ S1

S4 ≤ S2

S4 ≤ S6

S4 ≤ S7

S4 ≤ S8

S4 ≤ S9

S4 ≤ S10

S6 ≤ S1

S6 ≤ S2

S6 ≤
36

25
S7

S6 ≤ S8

S6 ≤ S9

S6 ≤ S10

S7 ≤ S1

S7 ≤ S2

S7 ≤ k4S6

S7 ≤ S8

S7 ≤ S9

S7 ≤ S10

S8 ≤ 3S1

S8 ≤ 2S2

S8 ≤ 3S6

S8 ≤ 4S7

S8 ≤
27

17
S9

S8 ≤
27

17
S10

S9 ≤
9

4
S1

S9 ≤
16

9
S2

S9 ≤
25

9
S6

S9 ≤ 4S7

S9 ≤ S8

S9 ≤
25

16
S10

S10 ≤
17

9
S1

S10 ≤
34

27
S2

S10 ≤
17

9
S6

S10 ≤
64

25
S7

S10 ≤ S8

S10 ≤ S9

where k4 ≈ 1.017624086 is the smallest positive root of 25947x7 + 653697x6 −
49857885x5 + 128952193x4 − 112076935x3 + 32426283x2 − 3014327x + 2963603.

We did not check for the conditions when equality occurs.

Corollary 8. For all triangles,

27r2 ≤ S4 ≤ S6 ≤ S1 ≤ S2 ≤ S10 ≤ S9 ≤ S8 ≤ 12R2.

Related results can be found in [7].
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5. Acute Triangles

Algorithm K in [8] allows us to search for inequalities that are true for all acute
triangles. We get the following results. We did not check for the conditions when
equality occurs.

Theorem 9. The inequalities given by Theorem 1 are best possible when the tri-
angles are restricted to acute triangles. In addition, the following inequality is
true for all acute triangles.

S3 ≤ 9R2

Theorem 10. The following inequalities are true for all acute triangles.(
75− 28

√
7
)
s2 ≤ S1 ≤ s2

s2 ≤ S2 ≤
3

2
s2

1s2 ≤ S3 ≤
17

9
s2

(15− 10
√

2)s2 ≤ S4 ≤ s2

49

9
(3− 2

√
2)s2 ≤ S5 ≤

33

25
s2

k5s
2 ≤ S6 ≤ s2

147− 19
√

57

4
s2 ≤ S7 ≤ s2

s2 ≤ S8 ≤ 3s2

s2 ≤ S9 ≤ 2s2

s2 ≤ S10 ≤
17

9
s2

7

8
s2 ≤ S11 ≤ (27− 18

√
2)s2

8043− 5330
√

2

529
s2 ≤ S12 ≤ s2

where k5 ≈ 0.8742445769 is the positive root of
5000x6 + 32241x5 + 215799x4 − 164970x3 − 239166x2 + 258633x− 77841.

Constants in blue are those that differ from the corresponding constant in Theo-
rem 2.
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Theorem 11. The following inequalities are true for all acute triangles.

27

2
rR ≤ S1 ≤

3

2

√
3Rs

27

2
rR ≤ S2 ≤ 3Rs

27

2
rR ≤ S3 ≤

34

9
Rs

(5 + 5
√

2)rR ≤ S4 ≤
3

2

√
3Rs

49 + 49
√

2

9
rR ≤ S5 ≤

66

25
Rs

49 + 49
√

2

9
rR ≤ S6 ≤

3

2

√
3Rs

(3 + 7
√

2)rR ≤ S7 ≤
3

2

√
3Rs

27

2
rR ≤ S8 ≤ 6Rs

27

2
rR ≤ S9 ≤

34

9
Rs

27

2
rR ≤ S10 ≤

34

9
Rs

k2rR ≤ S11 ≤ (9
√

2− 9)Rs

3001 + 2905
√

2

529
rR ≤ S12 ≤

3

2

√
3Rs

where k2 ≈ 14.12657721 is the positive root of 2x3 − 5x2 − 256x− 1024.

Constants in blue are those that differ from the corresponding constant in Theo-
rem 3.

Theorem 12. The inequalities given by Theorem 4 are best possible when the
triangles are restricted to acute triangles. In addition, the following inequality is
true for all acute triangles.

5K ≤ S4
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Theorem 13. The following inequalities are true for all acute triangles.

1

2
(a2 + b2 + c2) ≤ S1 ≤

3

4
(a2 + b2 + c2)

S2 =
3

4
(a2 + b2 + c2)

1

2
(a2 + b2 + c2) ≤ S4 ≤

3

4
(a2 + b2 + c2)

1

2
(a2 + b2 + c2) ≤ S6 ≤

3

4
(a2 + b2 + c2)

1

2
(a2 + b2 + c2) ≤ S7 ≤

3

4
(a2 + b2 + c2)

3

4
(a2 + b2 + c2) ≤ S8 ≤

3

2
(a2 + b2 + c2)

3

4
(a2 + b2 + c2) ≤ S9 ≤

17

18
(a2 + b2 + c2)

3

4
(a2 + b2 + c2) ≤ S10 ≤

17

18
(a2 + b2 + c2)

Constants in blue are those that differ from the corresponding constant in Theo-
rem 5.

Theorem 14. The following inequalities are true for all acute triangles.

6
√

2− 7

2
(ab + bc + ca) ≤ S1 ≤ ab + bc + ca

3

4
(ab + bc + ca) ≤ S2 ≤

3

2
(ab + bc + ca)

10
√

2− 5

14
(ab + bc + ca) ≤ S4 ≤ ab + bc + ca

k6 ≤ S6 ≤ ab + bc + ca

26
√

2− 27

14
(ab + bc + ca) ≤ S7 ≤ ab + bc + ca

3

4
(ab + bc + ca) ≤ S8 ≤ 3(ab + bc + ca)

3

4
(ab + bc + ca) ≤ S9 ≤

17

9
(ab + bc + ca)

3

4
(ab + bc + ca) ≤ S10 ≤

17

9
(ab + bc + ca)

where k6 ≈ 0.7067084379 is the positive root of 512000x7+831488x6+519424x5−
82176x4 + 1093104x3 − 2084400x2 + 946647x− 233523.

Constants in blue are those that differ from the corresponding constant in Theo-
rem 6.
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[6] Dragoslav S. Mitrinović, J. Pečarić, and Vladimir Volenec, Recent advances in geometric
inequalities. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
https://books.google.com/books?id=_OvGErB0QK4C

[7] Stanley Rabinowitz. Inequalities Involving Gergonne and Nagel Cevians, International
Journal of Computer Discovered Mathematics, 6(2021)78–83.
http://www.journal-1.eu/2021/Stanley%20Rabinowitz.%20Inequalities%

20Involving%20Gergonne%20and%20Nagel%20Cevians,%20pp.%2078-83..pdf

[8] Stanley Rabinowitz. A Computer Algorithm for Proving Symmetric Homogeneous Triangle
Inequalities, International Journal of Computer Discovered Mathematics, 7(2022)30–62.
http://www.journal-1.eu/2022/3.%20Stanley%20Rabinowitz.%20A%20Computer%

20Algorithm%20for%20Proving%20Symmetric%20Homogeneous%20Triangle%

20Inequalities,%20pp.%2030-62..pdf

http://www.journal-1.eu/2016-2/Grozdev-Dekov-Barycentric-Coordinates-pp.75-82.pdf
http://www.journal-1.eu/2016-2/Grozdev-Dekov-Barycentric-Coordinates-pp.75-82.pdf
https://www.jstor.org/stable/2690608
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://doi.org/10.4171/EM/418
https://books.google.com/books?id=_OvGErB0QK4C
http://www.journal-1.eu/2021/Stanley%20Rabinowitz.%20Inequalities%20Involving%20Gergonne%20and%20Nagel%20Cevians,%20pp.%2078-83..pdf
http://www.journal-1.eu/2021/Stanley%20Rabinowitz.%20Inequalities%20Involving%20Gergonne%20and%20Nagel%20Cevians,%20pp.%2078-83..pdf
http://www.journal-1.eu/2022/3.%20Stanley%20Rabinowitz.%20A%20Computer%20Algorithm%20for%20Proving%20Symmetric%20Homogeneous%20Triangle%20Inequalities,%20pp.%2030-62..pdf
http://www.journal-1.eu/2022/3.%20Stanley%20Rabinowitz.%20A%20Computer%20Algorithm%20for%20Proving%20Symmetric%20Homogeneous%20Triangle%20Inequalities,%20pp.%2030-62..pdf
http://www.journal-1.eu/2022/3.%20Stanley%20Rabinowitz.%20A%20Computer%20Algorithm%20for%20Proving%20Symmetric%20Homogeneous%20Triangle%20Inequalities,%20pp.%2030-62..pdf

	1. Introduction
	2. The Data
	3. Main Results
	4. Related Results
	5. Acute Triangles
	References

